Abstract

Although group IV semiconductor alloys are expected to form substitutionally, in Ge1−xSnx this is true only for low concentrations (x < 0.13). The use of these alloys as a narrow gap semiconductor depends on the ability to produce samples with the high quality required for optoelectronic device applications. In a previous paper, we proposed the existence of a non-substitutional complex defect (β-Sn), consisting of a single Sn atom in the center of a Ge divacancy, which may account for the segregation of Sn at large x. Afterwards, the existence of this defect was confirmed experimentally. In this paper we study the local environment and the interactions of the substitutional defect (α-Sn), the vacancy in Ge, and the β-Sn defect by performing extensive numerical ab initio calculations. Our results confirm that a β-Sn defect can be formed by natural diffusion of a vacancy around the substitutional α-Sn defect, since the energy barrier for the process is very small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.