Abstract

Despite its negative redox potential, nitroxyl (HNO) can trigger reactions of oxidation. Mechanistically, these reactions were suggested to occur with the intermediate formation of either hydroxyl radical (.OH) or peroxynitrite (ONOO-). In this work, we present further experimental evidence that HNO can generate.OH. Sodium trioxodinitrate (Na2N2O3), a commonly used donor of HNO, oxidized phenol and Me2SO to benzene diols and.CH3, respectively. The oxidation of Me2SO was O2-independent, suggesting that this process reflected neither the intermediate formation of ONOO- nor a redox cycling of transition metal ions that could initiate Fenton-like reactions. In solutions of phenol, Na2N2O3 yielded benzene-1,2-diol and benzene-1,4-diol at a ratio of 2:1, which is consistent with the generation of free.OH. Ethanol and Me2SO, which are efficient scavengers of.OH, impeded the hydroxylation of phenol. A mechanism for the hydrolysis of Na2N2O3 is proposed that includes dimerization of HNO to cis-hyponitrous acid (HO-N=N-OH) with a concomitant azo-type homolytic fission of the latter to N2 and.OH. The HNO-dependent production of.OH was with 1 order of magnitude higher at pH 6.0 than at pH 7.4. Hence, we hypothesized that HNO can exert selective toxicity to cells subjected to acidosis. In support of this thesis, Na2N2O3 was markedly more toxic to human fibroblasts and SK-N-SH neuroblastoma cells at pH 6.2 than at pH 7.4. Scavengers of.OH impeded the cytotoxicity of Na2N2O3. These results suggest that the formation of HNO may be viewed as a toxicological event in tissues subjected to acidosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.