Abstract

AbstractNiSi-silicided p+n shallow junctions are fabricated using BF2+ implantation into/through thin NiSi silicide layer (ITS technology) followed by low temperature furnace annealing (from 550 to 800°C). The NiSi film agglomerates following a thermal annealing at 600°C, and may result in the formation of discontinuous islands at a higher temperature. The incorporation of fluorine atoms in the NiSi film can retard the formation of film agglomeration and thus improve the film's thermal stability. A forward ideality factor of about 1.02 and a reverse current density of about 1nA/cm2 can be attained for the NiSi(310Å)/p+n junctions fabricated by BF2+ implantation at 35 keV to a dose of 5×1015cm-2 followed by a 650°C thermal annealing; the junction formed is about 60nm measured from the NiSi/Si interface. Activation energy measurements show that the reverse bias junction currents are dominated by the diffusion current, indicating that most of the implanted damages can be recovered after annealing at a temperature as low as 650°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.