Abstract
Transmission electron microscopy (TEM), secondary ion mass spectroscopy (SIMS), and x-ray photoemission spectroscopy (XPS) have been used to investigate the nucleation, growth, and ripening behavior of nickel-disilicide precipitates formed by Ni implantation in an amorphous-Si layer on (100) Si and followed by a two-step annealing treatment. The TEM and XPS results show that amorphous-disilicide precipitates are formed in a depth of ∼21 nm in the amorphous-Si layer when pre-annealed at 380°C for 30 sec. It is also shown that the second-step annealing at temperatures in the range of 450–600°C causes the amorphous precipitates to transform to randomly oriented crystalline ones embedded in the amorphous-Si layer. Annealing above 550°C is shown to induce the crystallization of amorphous Si by solid-phase epitaxial growth (SPEG). It is further shown that, in a prolonged annealing at high temperatures, the disilicide has dissolved and reprecipitated on the Si surface. Based on the roles of the silicide-mediated crystallization (SMC), the dissolution and reprecipitation of silicides, and SPEG, possible mechanisms are given to explain how the surface-disilicide islands are formed during annealing at temperatures of 550–950°C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Electronic Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.