Abstract

Flameless oxy-combustion is a very efficient technology for treating low-ranking fuels with energy recovery, when operating in the high temperature range of 1200–1600°C. However, the thermal valorization of these low-ranking fuels, containing a significant amount of vanadium, causes some problems due to the volatility and corrosiveness of V2O5 with ceramic and metal alloys at high temperatures. The formation of mixed V/Mg or V/Ni compounds, which are stable at high temperatures (1300°C), was investigated in a tubular lab-scale furnace with a residence time of 2s, starting from sprayed aqueous VOSO4, MgSO4, and NiSO4 solutions. It was seen that MgSO4 and/or NiSO4 led first to the formation of MgO and NiO, which then reacted with V2O5 to produce fully inert Mg2V2O7, Mg3V2O8, and Ni3V2O8. The experimental data were combined with thermodynamic equilibrium calculations, to predict the stability of the vanadates obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.