Abstract

Relevance. The search for suitable materials for creating a new generation of anodes in lithium-ion batteries that have not only high capacity, but also high electrical conductivity. For this purpose, the attempts have been made to use silicon Si, which has a high specific capacitance, instead of graphite C, but this material does not have high electrical conductivity. Copper silicides, in addition to high specific capacity, have high electrical conductivity values, since they do not react with lithium during operation, and therefore can be used to solve problems in the development of the above-mentioned lithium-ion anodes. Aim. To obtain dispersed materials in a high-speed jet of electric discharge plasma in the Cu-Si-C system. Objects. Dispersed materials obtained in the Cu-Si-C system. Methods. Plasma dynamic synthesis, X-ray diffractometry (X-ray phase analysis), scanning electron microscopy, transmission electron microscopy. Results. The authors have carried out the experimental studies to obtain dispersed materials of the Cu-Si-C system in a high-speed electric-discharge plasma jet and studied the microstructure and composition of the synthesized materials. It was revealed that the product consists of nanodispersed particles, which is confirmed by the results of scanning and electron microscopy. According to the results of X-ray diffractometry, crystalline phases of copper of the cubic system and copper silicides Cu3Si and Cu7Si of the hexagonal system are identified in the composition of the synthesized material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.