Abstract
The influence of iron addition on the crystallisation behaviour of Zr65Al7.5Cu17.5Ni10 bulk metallic glass was investigated by differential scanning calorimetry, (DSC), X-ray diffraction, (XRD), transmission electron microscopy, (TEM) and magnetisation measurements. The amorphous Zr65Al7.5Cu17.5Ni10 alloy crystallises eutectically into CuZr2 and Zr6NiAl2. Addition of iron in amorphous (Zr65Al7.5Cu17.5Ni10)100−xFex (0≤x≤20) leads to a changed crystallisation sequence and to the formation of nanocrystals. The formation of a cubic NiTi2-type phase (S.G. Fd \\bar3m,ao=1.22 nm) is the first step of crystallisation in amorphous alloys with iron contents x≥1. Depending on the iron content the average crystallite size decreases to the nanometer regime. Ultrafine nanoclusters of down to 2 nm in size are formed as the first step of crystallisation for amorphous Zr52Al6Cu14Ni8Fe20 due to a high nucleation rate combined with a low growth velocity. The clusters grow by Ostwald ripening during isothermal annealing up to 5 nm average crystallite size. The magnetic behaviour of the (Zr65Al7.5Cu17.5Ni10)100−xFex alloys is dominated by temperature-independent Pauli paramagnetism for x≤15. For x=20, a small contribution of magnetic clusters is observed. These ferromagnetic clusters are in accordance with statistic composition fluctuations within the homogeneous amorphous phase. With the formation of nanocrystals the size of the magnetic clusters increases to the same order of magnitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.