Abstract

The chemical formation of advanced ceramics from organometallic precursors is promising with respect to structural design and tailormade properties. We report on the synthesis of nanocrystalline titanium carbonitride materials at different pyrolysis temperatures via the polymer-to-ceramic transformation of synthesised poly(titanylcarbodiimides) and their structural and nanochemical characterization using high-resolution and analytical electron microscopy, in combination with quantummechanical calculations. Pyrolysis at 800 °C leads to a mixture of amorphous carbon and titanium nitride as crystalline particles of about 4 nm in size. Pyrolysis at 1100 °C yields titanium carbonitride as crystalline particles of 20–30 nm in size. The identification of all phases was possible by the analysis of the measured energy-loss near-edge spectra of their C–K and N–K edges, and comparison with measured standards and with simulated fine structures using calculations based on the density functional theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.