Abstract

Hyperthermal collisions between O(3P) and NO(X2Π) could lead to the formation of the first electronically excited atomic nitrogen (N(2D)), which plays a key role in plasma formation in shock-heated air. This process is facilitated mainly by four doublet states, and to a much lesser extent by two quartet states. In this work, we report quasi-classical trajectory studies of this reactive process using the four analytical adiabatic potential energy surfaces for the doublet states developed previously from fitting high-level ab initio data. The reactions were found to be strongly enhanced by vibrational excitation of the NO reactant, consistent with the existence of potential energy barriers in the exit channel. Despite the large endothermicity of the reaction, the rate coefficient is significant at high temperatures, suggesting a possible role of this reaction in the hyperthermal kinetics in the shock layer of a hypersonic (re)entry vehicle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call