Abstract

Mitragyna speciosa, more commonly known as kratom, has emerged as an alternative to treat chronic pain and addiction. However, the alkaloid components of kratom, which are the major contributors to kratom's pharmaceutical properties, have not yet been fully investigated. In this study, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry was used to map the biodistribution of three alkaloids (corynantheidine, mitragynine, and speciogynine) in rat brain tissues. The alkaloids produced three main ion types during MALDI analysis: [M + H]+, [M − H]+, and [M − 3H]+. Contrary to previous reports suggesting that the [M − H]+ and [M − 3H]+ ion types form during laser ablation, these ion types can also be produced during the MALDI matrix application process. Several strategies are proposed to accurately map the biodistribution of the alkaloids. Due to differences in the relative abundances of the ions in different biological regions of the tissue, differences in ionization efficiencies of the ions, and potential overlap of the [M − H]+ and [M − 3H]+ ion types with endogenous metabolites of the same empirical formula, a matrix that mainly produces the [M + H]+ ion type is optimal for accurate mapping of the alkaloids. Alternatively, the most abundant ion type can be mapped or the intensities of all ion types can be summed together to generate a composite image. The accuracy of each of these approaches is explored and validated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.