Abstract

This present article describes a new and simple method for preparing model lipid bilayers. Stable and reproducible surface layers were produced at silica surfaces by co- adsorbing lipid with surfactant at the silica surface from mixed micellar solutions. The adsorption was followed in situ by use of ellipsometry. The mixed micellar solution consisted of a lipid (L-alpha-dioleoyllecithin) and a non-ionic sugar-based surfactant (n-dodecyl-beta-maltoside). The latter showed, by itself, no affinity for the surface and could, therefore, easily be rinsed off the surface after the adsorption step. By first adsorbing from solutions with high lipid and surfactant concentrations and then, in succession, rinsing and re-adsorbing from solutions with lower lipid-surfactant concentrations, a dense-packed lipid bilayer was produced at the silica surface. The same result can be achieved in a one-step process where the rinsing, after adsorption from the concentrated solution, is performed very slowly. The thickness of the adsorbed lecithin bilayer after this treatment found was to be about 44 +/- 3 A, having a mean refractive index of 1.480 +/- 0.004. The calculated surface excess of lipids on silica was about 4.2 mg m(-2), giving an average area per lipid molecule in the two layers of 62 +/- 3 A2. The physical characteristic of the adsorbed bilayer is in good agreement with previously reported data on bulk and surface supported lipid bilayers. However, in contrast to previous investigations, we found no support for the presence of a thicker multi-molecular water layer located between the lipid layer and the solid substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call