Abstract

Adsorbed methyne (CH) intermediates were synthesized on the Ru(001) surface by hydrogenation of predeposited carbon under UHV conditions. These species were identified by High-Resolution Electron Energy-Loss Spectroscopy (HREELS) based upon spectra which exhibited an intense CH stretch at 2950 cm−1 and no evidence for CH2 scissor or CH3 umbrella modes. The adsorbed CH species could be formed by hydrogenation of carbon initially deposited by electron-beam-stimulated dissociation of CO, by thermal decomposition of ethylene, or by ethylene hydrogenolysis. The maximum intensity of the CH stretch was observed for surface temperatures of 370 K; the CH species decomposed completely to H2 plus adsorbed carbon upon heating the surface to 500 K. These results are consistent with the participation of CH intermediates in the Fischer-Tropsch synthesis via the “active-carbide” mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.