Abstract

This work demonstrates studies of ferromagnetic nanoparticle functionalization by a lipid-like compound, cationic pyridine amphiphile derived from 1,4-dihydropyridine, 1,1'-{[3,5-bis(dodecyloxycarbonyl)-4-phenyl-1,4-dihydropyridine-2,6-diyl]dimethanediyl}dipyridinium dibromide, and determination of optimal conditions for the production of magnetoliposomes. The following methodologies, such as sonication, spontaneous swelling, and reverse-phase evaporation, were used for the preparation of liposomes. Ferrofluid containing γ-Fe2O3 nanoparticles with a positively charged surface was used for the preparation of magnetoliposomes. The obtained soft matter objects were studied by optical microscopy, transmission electron microscopy, and dynamic light scattering techniques. The optimal conditions for the production of magnetoliposomes were found by spontaneous swelling and reverse-phase evaporation methods using ferrofluid with positively charged γ-Fe2O3 nanoparticles and cationic 1,4-dihydropyridine derivative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.