Abstract

Single- and double-walled magnetic nanotubes are obtained in a one-step liquid phase reaction by the cooperative self-assembly of chiral amphiphiles and nanoparticles on cooling of heated mixtures of N-dodecanoyl-L-serine and Fe(3)O(4) nanoparticles in toluene. The nanotubes are composed of well-ordered, close-packed nanoparticle assemblies, and can be transformed into chiral magnetic nanostructures, such as helical coils, by subsequent calcination. The nanoparticle assemblies and their variations on calcination are attributed to the collective organization of the surfactant molecules adsorbed on the nanoparticles and the freely dispersed chiral molecules, and the dewetting effects guided by the primitive constitution of the chiral amphiphilic molecular assemblies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.