Abstract
The formation of heteroprotein complexes obtained by the interactions between sodium caseinate (CAS) and lysozyme (LYS) at pH 7 was investigated by using turbidimetric analysis, particle size distribution, and zeta potential at different CAS/LYS ratios. Moreover, isothermal titration calorimetry (ITC) was used to determine the type and magnitude of the energies involved in the CAS/LYS complexation process and evaluated the thermodynamic behavior of their complexation. Results revealed that the structure of CAS/LYS complexes drastically changed when CAS/LYS ratio increased to 1.0 and the structuring stages were characterized by exothermic signals and were controlled by favorable enthalpy changes due to electrostatic interactions between both proteins. In addition, the interaction between two proteins was temperature-dependent and mainly entropy-driven, which was verified by molecular dynamics (MD) simulations, and the hydrophobic interactions and hydrogen bonding were shown to play an important role in CAS/LYS interactions. Furthermore, CAS/LYS complexes showed minimum LYS enzymatic activity at CAS/LYS ratio 1.0. Though spray-drying of CAS/LYS complexes with ratio 1.0, the LYS activity in reconstituted solution was recovered >80 % of initial activity after calcium chloride addition. The present study provides useful information about CAS/LYS complexation and binding processes, which could facilitate their application in antimicrobial edible food packaging.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.