Abstract

The Daniudi Gas Field is a typical large-scale coal-generated wet gas field located in the northeastern Ordos Basin that contains multiple Upper Paleozoic gas-bearing layers and considerable reserves of gas. Based on integrated analysis of reservoir petrology, carbonate cement C–O isotope, geochemistry of source rocks and HC gas and numerical basin modeling, a comprehensive study focusing on the formation of low permeability reservoirs and gas generation process uncovers a different gas accumulation scene in Daniudi Gas Field. The gas accumulation discovered was controlled by the reservoir permeability reduction and gas generation process, and can be divided into two distinct stages by the low permeability reservoir formation time: before the low permeability reservoir formation, the less matured gas was driven by buoyancy, migrated laterally towards NE and then accumulated in NE favorable traps during Late Triassic to early Early Cretaceous; after the low permeability reservoir formation, highly matured gas was driven by excessive pressure, migrated vertically and accumulated in-situ or near the gas-generating centers during early to late Early Cretaceous. The coupling relationship between reservoir diagenetic evolution and gas generation process controlled on gas accumulation of the Daniudi Gas Field. This study will aid in understanding the gas accumulation process and planning further E&D of the Upper Paleozoic super-imposed gas layers in the whole Ordos Basin and other similar super-imposed low permeability gas layer basins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call