Abstract

We present a comprehensive study of the diverse properties of heteronuclear Rydberg molecules, placing a special emphasis on those composed of the light alkali atoms, Li, Na, and K. Electron-atom scattering phase shifts, which determine the strength of the molecular bond, are calculated at very low energy and then used in a spin-dependent theoretical model to calculate accurate Rydberg molecule potential energy curves. The wide parameter range accessible by combining the various properties of different alkali atoms often leads to hybridized electronic states accessible via one or two photon excitation schemes. This analysis of heteronuclear molecules leads to a prediction that the relative densities and spatial distributions of atoms in an ultracold mixture can be probed at controllable length scales via spectroscopic detection of these molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.