Abstract
Mesoporous silica (MPS) was synthesized and used as a support for lipase Candida sp. 99–125 immobilization. The immobilization procedure was simple and effective: lipase Candida sp. 99–125 was first immobilized in the MPS by adsorption (named ADL@MPS), then chemical crosslinking was conducted for stabilizing the lipase and inhibiting leakage, and cross-linked enzyme aggregates (CLEAs) of Candida sp. 99–125 lipase in the MPS were obtained (named CLL@MPS). The stability of ADL@MPS and CLL@MPS was investigated. Compared with ADL@MPS and native lipase, CLL@MPS showed outstanding stability under vigorous shaking conditions and the thermal stability of CLL@MPS in the presence of organic solvents was also improved. Additionally, CLL@MPS exhibited high catalytic performance in hydrolysis, esterification, and transesterification reactions with increased stability and recyclability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.