Abstract

The formation of laterally ordered linear InAs quantum dot (QD) arrays based on self-organized anisotropic strain engineering is demonstrated. An InAs/InGaAsP superlattice (SL) on InP (1 0 0) serves as a template for the QD arrays grown by chemical beam epitaxy. The InAs QD arrays exhibit excellent photoluminescence emission up to room temperature which is tuned into the 1.55-μm telecom wavelength region through the insertion of ultra-thin GaAs interlayers. Stacking of the QD arrays with identical emission wavelength upon adjusting the GaAs interlayer thickness produces a three-dimensionally self-ordered QD crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.