Abstract
During low light- (LL) induced state transitions in dark-adapted rice (Oryza sativa) leaves, light-harvesting complex (LHC) II become phosphorylated and associate with PSI complexes to form LHCII-PSI-LHCI supercomplexes. When the leaves are subsequently transferred to high light (HL) conditions, phosphorylated LHCII complexes are no longer phosphorylated. Under the HL-induced transition in LHC phosphorylation status, we observed a new green band in the stacking gel of native green-PAGE, which was determined to be LHCII aggregates by immunoblotting and 77K chlorophyll fluorescence analysis. Knockout mutants of protein phosphatase 1 (PPH1) which dephosphorylates LHCII failed to form these LHCII aggregates. In addition, the ability to develop non-photochemical quenching in the PPH1 mutant under HL was less than for wild-type plants. As determined by immunoblotting analysis, LHCII proteins present in LHCII-PSI-LHCI supercomplexes included the Lhcb1 and Lhcb2 proteins. In this study, we provide evidence suggesting that LHCII in the LHCII-PSI-LHCI supercomplexes are dephosphorylated and subsequently form aggregates to dissipate excess light energy under HL conditions. We propose that this LHCII aggregation, involving LHCII L-trimers, is a newly observed photoprotective light-quenching process operating in the early stage of acclimation to HL in rice plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.