Abstract

Colloidal Laves phases (LPs) are promising precursors for photonic materials. Laves phases have not yet been observed to form in experiments on colloidal suspensions of hard spheres (HS), even though they have been reported in computer simulations. LP formation so far has been achieved only for binary mixtures of colloidal charged spheres or ligand-stabilized nano-particles after drying. Using static light scattering, we monitored LP formation and annealing in a binary mixture of buoyant hard sphere approximants (size ratio Γ = 0.77, number or molar fraction of small spheres xS = 0.76) for volume fractions in the fluid-crystal coexistence regions. All samples spontaneously formed MgZn2 type LPs on the time scale of weeks to months via bulk nucleation and growth. Irrespective of the initial suspension volume fractions, the LP volume fraction at coexistence is ΦCOEX = 0.59 which is significantly below the close packing limit ΦMAX = 0.615 and remarkably close to the expectation from simulation. At low volume fractions, crystals anneal to high quality during coarsening which is in line with recent theoretical expectations for the thermodynamic stability of different LP types. At large volume fractions, however, the diffractograms evolve towards a more MgCu2-like appearance which we attribute to the formation of randomly stacked LPs. Such structures are not known from atomic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.