Abstract

We investigated the hydrogenation mechanism of MmNi 4.30 - x Co x Al 0.30 Mn 0.40 (Mm: misch metal, x = 0 , 0.75) by means of in situ X-ray diffraction (XRD) measurement. Formation of lattice strain and change of crystallite size for both the solid solution phase and the hydride phase were analyzed by the Rietveld refinement of XRD profiles. In MmNi 4.30 Al 0.30 Mn 0.40 , the isotropic lattice strain showed less than 0.8% for both the phases through the whole range of hydrogen content, and anisotropic strain was not observed. The crystallite size for both the phases showed around 100 nm, which did not change significantly during hydrogenation and dehydrogenation. In MmNi 3.55 Co 0.75 Al 0.30 Mn 0.40 , the isotropic strain for both the phases depended on the fraction of each phase. It reached the maximum of 1.2% around the phase fraction of 0.5, while anisotropic strain was not observed. The crystallite size for both the phases showed around 100 nm through the whole range of hydrogen content. This result indicates that the solid solution phase changes to the hydride phase domain by domain during hydrogenation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.