Abstract
We fabricate groups of closely spaced self-assembled InAs quantum dots (QDs)—termed lateral QD molecules—on GaAs (001) by a combination of molecular-beam epitaxy and AsBr3 in situ etching. An initial array of homogeneously sized nanoholes is created by locally strain-enhanced etching of a GaAs cap layer above InAs QDs. Deposition of InAs onto the nanoholes causes a preferential formation of the InAs QD molecules around the holes. The number of QDs per QD molecule ranges from 2 to 6, depending on the InAs growth conditions. By decreasing the substrate temperature, the number of QDs per QD molecule increases, but the statistical distribution is wider due to a reduced In atom diffusion length. Our photoluminescence investigation documents the nanohole and QD molecule formation step by step and confirms the high crystal quality of these structures. An analysis of the nanohole geometry as a function of annealing time and InAs filling allows us to propose a model for the QD molecule formation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.