Abstract

The incorporation of hypericin (Hyp) from aqueous solutions into giant unilamellar vesicle (GUV) membranes has been studied experimentally and by means of kinetic Monte Carlo modeling. The time evolution of Hyp fluorescence originating from Hyp monomers dissolved in the GUV membrane has been recorded by confocal microscopy and while trapping individual GUVs in optical tweezers. It was shown that after reaching a maximum, the fluorescence intensity gradually decreased toward longer times. Formation of oversized Hyp clusters has been observed on the GUV surface at prolonged time. A simplified kinetic Monte Carlo model is presented to follow the aggregation/dissociation processes of Hyp molecules in the membrane. The simulation results reproduced the basic experimental observations: the scaling of the characteristic fluorescence decay time with the vesicle diameter and the buildup of large Hyp clusters in the GUV membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.