Abstract

We demonstrate the crystallization of thermally deposited amorphous germanium (Ge) microstrips on single layer graphene (SLG) by rapid melting growth. Lateral growth of large grain crystalline Ge was successfully obtained over entire microstrip structure. SLG has shown its capability to suppress the spontaneous nucleation in the melting Ge, where no or less intermixing of C and Ge atoms has been detected. The interaction of C atoms from the graphene and Ge atoms at the interface is the possible reason for the observation of large compressive strain generated in the Ge strip grown on SLG. This technique provides an innovative breakthrough towards the realization of single-crystalline Ge-on-insulator (GOI) structure on SLG to facilitate the next-generation ultra-large-scale integrated circuits (ULSIs) with multifunctionalities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.