Abstract

Propagation of short laser pulses in gases resulting in relativistic ionization fronts is studied numerically using a kinetic formulation based in the photon number phase-space distribution function. With this approach we are able to follow the dynamics of the laser pulse both in time and spectral content. The advance of the photon number is obtained by solving a Klimontovich type equation. The properties of the emergent laser pulse, responsible for the ionization front, such as duration, chirp and spectrum are continuously monitored by adequate diagnostics of the photon number phase-space distribution. In particular, a detailed analysis of the evolution of the laser pulse velocity is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call