Abstract

A thermodynamic model of the formation of unbonded areas or bubbles generated at the interface of bonded silicon wafers in the temperature range of 200–800°C is presented. Within this model it is assumed that the desorption of hydrocarbon contamination at the silicon wafer surfaces leads to small hydrocarbon molecules which are mobile at the bonding interface. When the vapor pressure generated by these molecules overcomes the interface bonding strength, interface bubbles are nucleated. These bubbles grow by incorporating further hydrocarbon and also possible hydrogen molecules. The model semiquantitatively explains all the essential features of interface bubble formation observed experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.