Abstract

Neutron diffraction on a triple-axis spectrometer and a small-angle neutron scattering instrument is used to study the magnetic phase transition in tetragonal Ba$_2$CuGe$_2$O$_7$ at zero magnetic field. In addition to the incommensurate cycloidal antiferromagnetic (AFM) long-range order, we establish that weak incommensurate ferromagnetism (FM) also arises below the transition temperature $T_N$ identified by sharp Bragg peaks close to the $\Gamma$ point. The intensities of both the incommensurate AFM and FM Bragg peaks vanish abruptly at $T_N$ indicative of a weak first-order transition. Above $T_N$, evidence is presented that the magnetic intensity within the tetragonal $(a,b)$ plane is distributed on a ring in momentum space whose radius is determined by the incommensurate wavevector of the cycloidal order. We speculate that the associated soft fluctuations are at the origin of the weak first-order transition in the spirit of a scenario proposed by Brazovskii.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.