Abstract

In the United States, high-fructose corn syrup (HFCS) has become a sucrose replacement for honey bees and has widespread use as a sweetener in many processed foods and beverages for human consumption. It is utilized by commercial beekeepers as a food for honey bees for several reasons: to promote brood production, after bees have been moved for commercial pollination, and when field-gathered nectar sources are scarce. Hydroxymethylfurfural (HMF) is a heat-formed contaminant and is the most noted toxin to honey bees. Currently, there are no rapid field tests that would alert beekeepers of dangerous levels of HMF in HFCS or honey. In this study, the initial levels and the rates of formation of HMF at four temperatures were evaluated in U.S.-available HFCS samples. Different HFCS brands were analyzed and compared for acidity and metal ions by inductively coupled plasma mass spectroscopy. Levels of HMF in eight HFCS products were evaluated over 35 days, and the data were fit to polynomial and exponential equations, with excellent correlations. The data can be used by beekeepers to predict HMF formation on storage. Caged bee studies were conducted to evaluate the HMF dose-response effect on bee mortality. Finally, commercial bases such as lime, potash, and caustic soda were added to neutralize hydronium ion in HMF samples, and the rates of HMF formation were compared at 45 degrees C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.