Abstract

Fine particle peening (FPP) using hydroxyapatite (HAp) shot particles can form a HAp layer on room-temperature substrates by the transfer and microstructural modification of the shot particles. In this study, FPP with HAp shot particles was applied to form a HAp surface layer and improve the fatigue properties of Ti–6Al–4V extra-low interstitial (ELI) for use in bio-implants. The surface microstructures of the FPP-treated specimens were characterized by micro-Vickers hardness testing, scanning electron microscopy, energy-dispersive X-ray spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. FPP with HAp shot particles successfully formed a HAp layer on the surface of Ti–6Al–4V ELI in a relatively short period by shot particle transfer at room temperature; however, the thickness and elemental composition of the HAp layer were independent of the FPP treatment time. The original HAp crystal structure remained in the surface-modified layer formed on Ti–6Al–4V ELI after FPP. Furthermore, FPP increased the surface hardness and generated compressive residual stresses at the treated surface of Ti–6Al–4V ELI. Four-point bending fatigue tests were performed at stress ratios of 0.1 and 0.5 to examine the effect of FPP with HAp shot particles on the fatigue properties of Ti–6Al–4V ELI. The fatigue life of the FPP-treated specimen was longer than that of the un-peened specimen because of the formation of a work-hardened layer with compressive residual stress. However, no clear improvement in the fatigue limit of Ti–6Al–4V ELI occurred after FPP with HAp shot particles because of subsurface failures from characteristic facets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.