Abstract
The accumulation of hyaluronan (HA) and the HA-binding proteoglycan versican around smooth muscle cells in lesions of atherosclerosis suggests that together these molecules play an important role in the events of atherogenesis. In this study we have examined the formation of HA- and versican-rich pericellular matrices by human aortic smooth muscle cells in vitro, using a particle-exclusion assay, and the role of the pericellular matrix in cell proliferation and migration. The structural dependence of the pericellular matrix on HA can be demonstrated by the complete removal of the matrix with Streptomyces hyaluronidase. The presence of versican in the pericellular matrix was confirmed immunocytochemically. By electron microscopy, the cell coat was seen as a tangled network of hyaluronidase-sensitive filaments decorated with ruthenium red-positive proteoglycan granules. Ninety percent of migrating cells in wounded cultures, and virtually all mitotic cells, displayed abundant HA- and versican-rich coats. Time-lapse video imaging revealed that HA- and versican-rich pericellular matrix formation is dynamic and rapid, and coordinated specifically with cell detachment and mitotic cell rounding. HA oligosaccharides, which inhibit the binding of HA to the cell surface and prevent pericellular matrix formation, significantly reduced proliferation and migration in response to platelet-derived growth factor, whereas larger HA fragments and high molecular weight HA had no effect. Treatment with HA oligosaccharides also led to changes in cell shape from a typical fusiform morphology to a more spread and flattened appearance. These data suggest that organization of HA- and versican-rich pericellular matrices may facilitate migration and mitosis by diminishing cell surface adhesivity and affecting cell shape through steric exclusion and the viscous properties of HA proteoglycan gels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Arteriosclerosis, Thrombosis, and Vascular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.