Abstract

A nonlinear hot image is usually thought as of a special case of self-focusing, and thus occurs when a laser beam propagates through a slab of self-focusing medium. Here we show theoretically that a hot image may also be formed by a thin slab of self-defocusing medium. The physical origin for this hot image formation is akin to the in-line volume–phase holographic imaging due to the intensity-dependent refractive-index modulation of the self-defocusing medium. Numerical simulations confirm the theoretical prediction and further identify the dependence of the hot image on the beam power, the modulation depth of obscuration and the thickness of self-defocusing medium. The analysis presented here brings new insight into the physics of hot image formation in the high power laser system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.