Abstract

We report the use of a silicon microfabricated device as a new spinneret for electrospinning purposes. This device has been realized on silicon substrates using a deep reactive ion etching process. To make proper holes in the center of microneedles, a rotating angle deposition method followed by vertical etching of silicon is employed. By using these needles as fluid nozzles in the electrospinning process, poly vinyl alcohol solution with a concentration of 7 % has been converted into nanofibers. The formation of nanofibers has been investigated using field emission scanning electron microscopy. Using this process, nanofibers with a diameter of 100–200 nm are realized where the dispersion is less than 50 nm. Finally, the effects of needle size and the applied voltage have been investigated on the diameter of nanofibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.