Abstract

The detection of high-mass, nonstoichiometric, GaxAsy and InxPy secondary ion clusters using time-of-flight secondary ion mass spectrometry is reported for the first time. The GaxAsy and InxPy clusters are detected in both positive and negative ion spectra and extend to masses of at least 6000 dalton (Da). Consecutive clusters differ by the addition of one gallium (indium) atom. This leads to nonstoichiometric clusters at high mass (i.e., Ga15As3 at 1270 Da) which are metastable above a critical mass. The relative secondary ion yields of high-mass GaxAsy clusters detected using several primary ion sources (Cs+, Bi+, Bi3+, Bi32+, Bi52+, C60+, and C602+) are compared. The relative secondary ion yield of high-mass GaxAsy clusters is significantly enhanced by the use of cluster primary ions and the best relative secondary ion yield is obtained using Bi3+ primary ions. An application of the high-mass GaxAsy clusters is presented, in which these clusters are utilized to distinguish between contaminant levels of Ga and bulk GaAs structure in a depth profile of a MnAs/GaAs heterojunction. These results illustrate improved analysis of inorganic materials using cluster primary ions and break the paradigm of stoichiometric secondary cluster ion formation for SIMS of inorganic compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call