Abstract

Nanoparticles with well-defined chemical compositions can act as building blocks for the construction of functional structures, such as highly ordered aggregates, as well as porous and hollow aggregates. In this work, a spray-drying technique is used to form a crystal-like structure with nanoparticle building blocks. When spray-drying uniform spherical particles, tightly packed aggregates with either simple or broken symmetries (quasicrystalline) were formed. Using polystyrene (PS) particles with varied zeta potentials as templates, it is also possible to form highly ordered porous and hollow aggregates from inorganic colloidal particles. Essential to the production of quasicrystalline structures is the use of monodisperse colloidal particles in spray drying, as the quasicrystalline form is not achievable when two different sizes of colloidal particles are used in the precursor suspension. With varying colloidal particles sizes, smaller colloidal particles fill the spaces formed between the larger particles, resulting in adjustment of colloidal crystallization. A geometric model that considers the tight packing of several spheres into frustrated clusters (quasicrystal form) with short-range icosahedral symmetry is compared to experimentally produced structures and found to quantitatively explain experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.