Abstract

ABSTRACTComposite Ag-SiO2 thin films were deposited to examine the stability of materials with high resistivity above 5000 μΩ-cm. We found that the resistivity increases exponentially with SiO2 volume fractions larger than 0.50 which is consistent with a tunneling conductivity mechanism. In order to obtain a broad composition range, these films were deposited on a stationary substrate placed above Ag and SiO2 sputtering sources. This configuration allowed compositions ranging from 0.8 to 56.3% SiO2 to be deposited on the same sample. Resistance measurements were made using a four-point probe and a profilometer was used to measure thickness. Predicted values of thickness and composition were obtained by calibrating deposition rates from the separate sources, and were verified using Rutherford Backscattering Spectroscopy. Electron microscopy analysis revealed Ag agglomerating on the surface of the film. Because of the high mobility of Ag, the films should be capped to prevent Ag agglomeration. The results of this research demonstrate that high-resistivity thin films can be grown using Ag-SiO2 composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.