Abstract
This tutorial explores the major pathways of forming metal–carbon double bonds in high-oxidation-state alkylidene complexes that began with the alkylidene chemistry of tantalum complexes in the 1970s and continued with the organometallic chemistry of Mo, W, and Re and the development of homogeneous catalysts for the metathesis of olefins. It also explores recent findings in surface organometallic chemistry and discusses the link between molecularly defined and heterogeneous catalysts. Recent results suggest that heterogeneous olefin metathesis catalysts that are activated toward metathesis upon exposure to olefins produce a d0 alkylidene through formation of a metallacyclopentane ring at d2 metal sites followed by “a ring contraction” to a metallacyclobutane, a reaction that was first observed in tantalum chemistry.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.