Abstract

In the present paper, starch was used as raw material to prepare carbon material with low-temperature hydrothermal route and hierarchical three-dimensional cross-linked porous carbon was successfully synthesized with the help of a small amount of graphene for high-performance supercapacitors. It's found that presence of graphene is a crucial condition for the formation of 3D porous carbon and graphene acts as a skeleton in the porous carbon. This kind of carbon material exhibited very high surface area of 1887.8 m2 g−1 and delivered excellent electrochemical performance. Its specific capacitance can reach 141 F g−1 at 0.5 A g−1 and more importantly, after 10,000 cycles 98.6% of initial specific capacitance can be maintained. To explore the practical application of the 3D porous carbon, an asymmetric supercapacitor coin-type device was assembled with 3D porous carbon and graphene as electrode materials in organic electrolyte. The constructed device exhibited high energy density of 48.5 Wh·kg−1 at a power density of 1.5 kW kg−1 and still maintains 39.625 Wh·kg−1 under the high power density (15 kW kg−1). These results will promote the rapid development of 3D porous carbon prepared by low-temperature route and the application in supercapacitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call