Abstract

Because of the low solubility of N atoms in metals, hexagonal boron nitride (h-BN) growth has explained by surface reaction on metal rather than by penetration/precipitation of B and N atoms in metal. Here, we present an impressive pathway of h-BN formation at the interface between Ni and oxide substrate based on B-N molecular diffusion into Ni through individual atomic vacancies. First-principles calculations confirmed the formation energies of the h-BN layers on and under the metal and the probability of B-N molecular diffusion in metal. The interface growth behavior depends on the species of metal catalysts, and these simulation results well support experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.