Abstract

Formation of HCN and NH3 during the pyrolysis and reforming of quinoline with steam was investigated using a novel two-stage fluidized-bed/fixed-bed reactor. The reactions via soot formation on a solid surface (e.g., sand) provide important routes for the conversion of quinoline-N into HCN and NH3 during pyrolysis and steam reforming at temperatures below 850 °C. The main route for the HCN formation is the breakdown of the N-containing intermediates as the intermediates undergo cracking and polymerization reactions to form soot. The subsequent hydrogenation of soot-N is an important source for NH3 formation when the temperature is 850 °C or lower. The gasification of soot in steam can also account for a small portion of the observed HCN. Above 850 °C, the hydrolysis of HCN into NH3 alters the final yields of HCN and NH3 during the reforming of quinoline with steam. During the reforming of quinoline with steam at 800 °C, the addition of coal ash, simulating the conditions in a coal/biomass gasifier, remarkably enhances the hydrolysis of HCN into NH3, although the activity of the ash diminished rapidly with time due to possible changes in the physicochemical forms of active species in ash.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.