Abstract

The mechanism and the rate of formation of H2 molecules from adsorbed H atoms on interstellar ice grains (or on ice coated non-icy grains) are investigated assuming that the ice is not crystalline but amorphous. Using the available theory and experimental data it is concluded that, in contrast to crystalline grains, the mobility of the adsorbed atoms on amorphous grains at temperatures of 10–20 K is exceedingly low so that the controlling factor is the probability that two H atoms are accidentally adsorbed within a site or two of each other. The rate of H2 formation on ice grains per unit volume is much lower than previously estimated and is very sensitive to temperature. This conclusion applies not only to pure amorphous ice investigated here, but also to impure ice and to other grains (carbon or silicates) which would not be crystalline, such as graphite, but may be highly imperfect or actually amorphous aggregates of atoms or molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call