Abstract

Cross sections for 2s excitation of H atoms in 10 - 100 keV collisions have been determined using a modulated crossed-beam technique. The measurements have been based on observations of the Lyman alpha radiation emitted during electric-field-induced decay of the metastable H(2s) collision products. The results extend the range of the 5 - 26 keV cross sections measured by Morgan and co-workers to intermediate energies where theoretical predictions based on close-coupling methods are known to be strongly dependent on the choice of the expansion basis. The present cross sections pass through a broad maximum at about 40 keV. Over the range 5 - 100 keV the available experimental data exhibit an undulatory structure similar to that predicted by some close-coupling calculations but good quantitative agreement is very limited. Close-coupling calculations which employ large basis sets and include a large number of projectile states at the expense of target states are shown to agree less satisfactorily with experiment than those which include only the dominant 1s capture projectile channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call