Abstract

Effects of growth conditions and post-growth treatments, such as presence of N ions, N2 flow, growth temperature, In alloying, and postgrowth rapid thermal annealing (RTA), on formation of grown-in defects in Ga(In)NP prepared by molecular beam epitaxy are studied in detail by the optically detected magnetic resonance (ODMR) technique. Several common residual defects, such as two Ga-interstitial defects (i.e., Gai-A and Gai-B) and two unidentified defects with a g factor around 2 (denoted by S1 and S2), are closely monitored. Bombardment of impinging N ions on grown sample surface is found to facilitate formation of these defects. Higher N2 flow is shown to have an even more profound effect than a higher number of ions in introducing these defects. Incorporation of a small amount of In (e.g., 5.1%) in GaNP seems to play a minor role in the formation of the defects. In GaInNP with 45% of In; however, the defects were found to be abundant. Effect of RTA on the defects is found to depend on initial configurations of Gai-related defects formed during the growth. In the alloys where the Gai-A and Gai-B defects are absent in the as-grown samples (i.e., GaNP grown at a low temperature of 460°C), the concentrations of the two Gai defects are found to increase after postgrowth RTA. This indicates that the defects originally introduced in the as-grown alloys have been transformed into the more thermally stable Gai-A and Gai-B during RTA. On the other hand, when the Gai-A and Gai-B are readily abundant (e.g., at higher growth temperatures (⩾500°C), RTA leads to a slight reduction of the Gai-A and Gai-B ODMR signals. The S2 defect is also shown to be thermally stable upon the RTA treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call