Abstract

The low efficacy and high toxicity of chemotherapy have been driving increasing attention on development of combined anticancer therapy technique. In the current work, graphene oxide (GO)-hybridized nanogels (AGD) were developed for delivery of an anticancer drug (doxorubicin (DOX)), which simultaneously presented photothermal therapeutic effects against cancer cells. AGD nanogels were fabricated by in situ incorporating GO nanoplatelets into a biodegradable polymer (alginate) via a double emulsion approach using a disulfide molecule as crosslinker, followed by DOX encapsulation via electrostatic interactions. The nanogels released DOX drug in an accelerated way under both acidic and reducible conditions mimicking extracellular tumor microenvironments and intracellular compartments. The stimulative release controllability of the nanogels improved the DOX internalization and long-term drug accumulation inside A549 cells (an adenocarcinoma human alveolar basal epithelial cell line), which, together with their photothermal effect, resulted in a good anticancer cytotoxicity, indicating their promising potential for combinative anticancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.