Abstract

Facile construction of graphene nanostructures are potentially important for fundamental studies and various applications owing to its transparency and mechanical strength. Here we found that focused laser irradiation of a graphene/entrapped water/hydrophobic substrate leads to vaporization of entrapped water and consequent formation of graphene nanostructures. Graphene mechanically exfoliated on a hydrophobicized Si substrate was served as a transformable and impermeable nanocontainer in which water anisotropically and slowly diffuses from the weak edges into the van der Waals (vdW)-coupled interstitial volume between graphene and the substrate. Time-lapsed Raman mappings show that water entrapment promotes progressive lowering of the frequencies of the G and 2D bands of graphene and exhibits slower diffusion owing to vdW decoupling of substrate-induced doping and biaxial strain of graphene with hydrophobic substrate. Moreover, vaporized entrapped water promotes nanostructures by graphene sliding and bulging actions. This methodology represents viable approach to produce nanostructures from two dimensional materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.