Abstract

Microstructure evolution in alpha-beta Ti-64 alloy samples with lamellar structure deformed to a height reduction of 70% at temperatures between 450 and 800°C has been investigated. The deformation led to a distinctly globularized structure of α- and β-phase in the whole temperature interval. The dependence of globular grain size on deformation temperature is of a linear character up to the temperature of warm deformation at which formation of an SMC structure takes place. Continuous recrystallization was observed in the α-and β-phases. Different types of defects responsible for splitting of α-lamellae such as low and high angle boundaries, shear bands and twins were found. An investigation of boundary misorientation spectra in the α-and β-phases deformed to different strains at 550 and 800°C was carried out. Typical boundary misorientation spectra for single phase metals with the same lattice were obtained. The boundary misorientation spectrum depends weakly on strain and deformation temperature. The results of this study show the importance of transformation of semi-coherent interphase boundaries to non-coherent ones for globularization of lamellar microstructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.