Abstract

Amidotriphosphate (0.1 M) in aqueous solution at near neutral pH in the presence of magnesium ions (0.25 M) converts glycolaldehyde (0.025 M) within days at room temperature into glycolaldehyde phosphate in (analytically) nearly quantitative yields (76% in isolated product). This robust phosphorylation process was observed to proceed at concentrations as low as 30 microM glycolaldehyde and 60 microM phosphorylation reagent under otherwise identical conditions. In sharp contrast, attempts to achieve a phosphorylation of glycolaldehyde with cyclotriphosphate ('trimetaphosphate') as phosphorylating reagent were unsuccessful. Mechanistically, the phosphorylation of glycolaldehyde with amidotriphosphate is an example of intramolecular delivery of the phosphate group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.