Abstract

In several neuropathological conditions, alphaB-crystallin and glial fibrillary acidic protein (GFAP) accumulate and form cytoplasmic inclusions in astrocytes. To explore the pathogenesis of the inclusions and the possible functions of the accumulated alphaB-crystallin, GFAP and alphaB-crystallin were overexpressed in cultured astrocytes by transient transfection. Human GFAP formed filamentous, cytoplasmic inclusions in mouse astrocytes, NIH3T3 cells, rat C6 glioma cells, and human U251 glioma cells. These human GFAP inclusions did not contain the endogenous vimentin or beta-tubulin, and the intermediate filament and microtubular networks of the transfected cells appeared normal. alphaB-crystallin and hsp25 were associated with the GFAP inclusions. Increasing intracellular alphaB-crystallin levels using recombinant adenoviruses, either before or after GFAP inclusions were formed, decreased the number of inclusion-bearing astrocytes and converted the human GFAP from an inclusion to a spread, filamentous form. These results suggest that alphaB-crystallin reorganizes abnormal intermediate filament aggregates into the normal filamentous network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call