Abstract

Data from our compiled catalog of spectroscopically determined magnesium abundances in dwarfs and subgiants with accurate parallaxes are used to select Galactic halo stars according to kinematic criteria and to identify presumably accreted stars among them. Accreted stars are shown to constitute the majority in the Galactic halo. They came into the Galaxy from disrupted dwarf satellite galaxies. We analyze the relations between the relative magnesium abundances, metallicities, and Galactic orbital elements for protodisk and accreted halo stars. We show that the relative magnesium abundances in protodisk halo stars are virtually independent of metallicity and lie within a fairly narrow range, while presumably accreted stars demonstrate a large spread in relative magnesium abundances up to negative [Mg/Fe]. This behavior of protodisk halo stars suggests that the interstellar matter in the early Galaxy mixed well at the halo formation phase. The mean metallicity of magnesium-poor ([Mg/Fe] < 0.2 dex) accreted stars has been found to be displaced toward the negative values when passing from stars with low azimuthal velocities (|Θ| < 50 km s−1) to those with high ones at Δ[Fe/H] ≈ −0.5 dex. The mean apogalactic radii and inclinations of the orbits also increase with increasing absolute value of |Θ|, while their eccentricities decrease. As a result, negative radial and vertical gradients in relative magnesium abundances are observed in the accreted halo in the absence of correlations between the [Mg/Fe] ratios and other orbital elements, while these correlations are found at a high significance level for genetically related Galactic stars. Based on the above properties of accreted stars and our additional arguments, we surmise that as the masses of dwarf galaxies decrease, the maximum SN II masses and, hence, the yield of α-elements in them also decrease. In this case, the relation between the [Mg/Fe] ratios and the inclinations and sizes of the orbits of accreted stars is in complete agreement with numerical simulations of dynamical processes during the interaction of galaxies. Thus, the behavior of the magnesium abundance in accreted stars suggests that the satellite galaxies are disrupted and lose their stars en masse only after dynamical friction reduces significantly the sizes of their orbits and drags them into the Galactic plane. Less massive satellite galaxies are disrupted even before their orbits change appreciably under tidal forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.