Abstract

ON Venus, fold-and-thrust belts—which accommodate large-scale horizontal crustal convergence—are often located at the margins of kilometre-high plateaux1–5. Such mountain belts, typically hundreds of kilometres long and tens to hundreds of kilometres wide, surround the Lakshmi Planum plateau in the Ishtar Terra highland (Fig. 1). In explaining the origin of fold-and-thrust belts, it is important to understand the relative importance of thick-skinned deformation of the whole lithosphere and thin-skinned, large-scale overthrusting of near-surface layers. Previous quantitative analyses of mountain belts on Venus have been restricted to thin-skinned models6–8, but this style of deformation does not account for the pronounced topographic highs at the plateau edge. We propose that the long-wavelength topography of these venusian fold-and-thrust belts is more readily explained by horizontal shortening of a laterally heterogeneous lithosphere. In this thick-skinned model, deformation within the mechanically strong outer layer of Venus controls mountain building. Our results suggest that lateral variations in either the thermal or mechanical structure of the interior provide a mechanism for focusing deformation due to convergent, global-scale forces on Venus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.